jueves, 5 de noviembre de 2009

¿Cómo funcionan las baterías?

Cómo Funcionan las Baterías

Una batería es escencialmente una lata llena de químicos que producen electrones. Las reacciones químicas son capaces de producir electrones y este fenómeno es llamado reacción electroquímica.

Si se examina una batería, esta tiene dos terminales. Una terminal está marcada (+) positivo mientras la otra está marcada (-) negativo. En una AA, o C (baterías más comunes) los extremos son los terminales. En una batería de auto existen dos grandes tubos que actúan de terminales.

Los electrones se agrupan en la terminal negativa de la batería. Si se conecta un cable entre las terminales positivas y negativas, los electrones pasarán de la terminal negativa a la positiva tan rápido como puedan (y descargarán a la batería muy rápido -esto también tiende a ser peligroso, especialmente con baterías grandes, así que no es algo que debería hacer-). Normalmente se coloca algún tipo de artefacto a la batería con el cable. Este artefacto puede ser una bombilla, un Motor, un circuito electrónico como un radio, etc.

Dentro de la batería misma, una reacción química produce electrones, y la velocidad de la producción de electrones hecha por esta reacción (la resistencia interna de la batería) controla cuántos electrones pueden pasar por las terminales. Los electrones pasan de la batería al cable, y deben viajar de la terminal negativa a la positiva paa que la reacción química se lleve a cabo. Es por eso que que una batería puede guardarse por un año y todavía conserva su energía plenamente -a menos que los electrones corran hacia la terminal positiva, la reacción química no se efctuará-. Una vez que se conecte el cable, la reacción empieza.

Química de Baterías

Si desea aprender acerca de las reacciones electroquímicas que utilizan las baterías, será fácil ejecutar experimentos en casa para probar diferentes combinaciones. Para hacer esos experimentos con precisión, debería comprar un medidor de voltios-ohmnios en una tienda cercana. Asegúrese de que el medidor pueda leer voltajes bajos (en el rango de 1 volt) y corrientes bajas (en el rango de 5 a 10 miliamp). Así verá exactamente qué es lo que hace su batería.

La primera batería fue creada por Alessandro Volta en 1800. Para crear su batería utilizó una pila alternando capas de cinc y plata, empleando papel secante empapado en agua salada como aislante. Así más o menos:

{REDOX@1}

Este artefacto fue conocido como "pila voltaica". Las capas superior e inferior de la pila deben de ser de diferentes metales, como se muestra. Si ata un cable de arriba a abajo de la pila puede calcular un voltaje y una corriente. La pila puede seguir agrandándose tanto como quiera, y cada capa incrementará el voltaje por una cantidad determinada. Puede crear su propia pila voltaica utilizando monedas y toallas de papel. Mezcle sal con agua (toda la sal posible que el agua pueda soportar) y empape el papel en esta mezcla. Entonces cree una plia alternando entre diferentes metales. Observe qué tipo de voltaje y corriente produce la pila. Trate con diferentes números de capas y observe qué efectos tiene en el voltaje. Entonces trate alternando entre monedas y vea qué pasa. Otras combinaciones incluyen al acero y al aluminio. Cada combinación metálica produce un voltaje levemente diferente.

Otro experimento simple que puede tratar es utilizar un frasco de compota para bebé, un ácido diluído, cables y clavos. Llene el frasco con jugo de limón o vinagre (diluya los ácidos) y coloque un clavo y un pedazo de cable de cobre en el frasco de manera que no lo toque (el cable entre un clavo y otro). Utilize clavos galvanizados y de hierro. Entonces calcule el voltaje y corriente atando su voltímetro a las 2 piezas de metal. Cambie el jugo de limón por agua salada, y utilice diferentes clavos y metales para ver el efecto.

Las baterías modernas utilizan una variedad de químicos para realizar sus reacciones. La química de las baterías comunes incluyen:

  • Baterías de Cinc, también conocidas como baterías estándar de carbón. La química de cinc-carbón es utilizada en cualquier batería AA, o afín. Los electrodos son de cinc y carbón, con una unión ácida entre ellas como electrolito.

  • Baterías alcalinas. Los electrodos son de cinc y óxido de manganeso con un electrolito alcalino.

  • Batería de níquel-cadmio. Utiliza el hidróxido de níquel y electrodos de cadmio con hidróxido de potasio como electrolito. Es recargable.

  • Hidruro de níquel-metal. Recargable. Reemplazó rápido al níquel-cadmio porque no sufre de los problemas que tiene la anterior.

  • Ion-litio. Recargable. Muy buen porcentaje de desempeño, se utiliza en los últimos PC's portátiles y teléfonos celulares.

  • Plata-cinc. Utilizada en aplicaciones aeronáuticas porque el porcentaje de desempeño es bueno.

Mapa conceptual (Reacciones redox)


viernes, 23 de octubre de 2009

Número de Oxidación

La cuantificación de un elemento químico puede efectuarse mediante su número de oxidación. Durante el proceso, el número de oxidación del elemento; aumenta. En cambio, durante la reducción, el número de oxidación de la especie que se reduce, disminuye. El número de oxidación es un número entero que representa el número de electrones que un átomo pone en juego cuando forma un enlace determinado.
El número de oxidación:
Aumenta si el átomo pierde electrones (el elemento químico que se oxida), o los comparte con un átomo que tenga tendencia a captarlos.
Disminuye cuando el átomo gana electrones (el elemento químico que se reduce), o los comparte con un átomo que tenga tendencia a cederlos.


Reglas para asignar el número de oxidación

El número de oxidación de un elemento sin combinar es cero.
El número de oxidación del hidrógeno combinado es +1, excepto en los hidruros, donde su número de oxidación es –1.
El número de oxidación del oxígeno combinado es –2, excepto en los peróxidos, donde su número de oxidación es –1.
El número de oxidación en los elementos metálicos, cuando están combinados es siempre positivo y numéricamente igual a la carga del ion.
El número de oxidación de los halógenos en los hidrácidos y sus respectivas sales es –1, en cambio el número de oxidación del azufre en su hidrácido y respectivas sales es –2.
El número de oxidación de una molécula es cero.

Reducción

En química, reducción es el proceso electroquímico por el cual un átomo o ion gana electrones. Implica la disminución de su estado de oxidación. Este proceso es contrario al de oxidación.
Cuando un
ion o un átomo se reduce:
Gana electrones.
Actúa como
agente oxidante.
Es reducido por un
agente reductr.
Disminuye su estado o número de oxidación.
Ejemplo
El ion
hierro (III) puede ser reducido a hierro (II):
Fe3+ + e− → Fe2+
En
química orgánica, la disminución de enlaces de átomos de oxígeno a átomos de carbono o el aumento de enlaces de hidrógeno a átomos de carbono se interpreta como una reducción. Por ejemplo:
CH=CH + H2 → CH2=CH2 (el
etino se reduce para dar eteno).
CH3–CHO + H2 → CH3–CH2OH (el
etanal se reduce a etanol).

viernes, 9 de octubre de 2009

Oxidación

La oxidación es una reacción química donde un compuesto cede electrones, y por lo tanto aumenta su estado de oxidación.
Se debe tener en cuenta que en realidad una oxidación o una reducción es un proceso por el cual cambia el estado de oxidación de un compuesto. Este cambio no significa necesariamente un intercambio de electrones.


Suponer esto -que es un error común- implica que todos los compuestos formados mediante un proceso redox son iónicos, puesto que es en éstos compuestos donde sí se da un enlace iónico, producto de la transferencia de electrones. Por ejemplo, en la reacción de formación del cloruro de hidrógeno a partir de los gases dihidrógeno y dicloruro, se da un proceso redox y sin embargo se forma un compuesto covalente. Estas dos reacciones siempre se dan juntas, es decir, cuando una sustancia se oxida, siempre es por la acción de otra que se reduce. Una cede electrones y la otra los acepta. Por esta razón, se prefiere el término general de reacciones redox.
La propia
vida es un fenómeno redox. El oxígeno es el mejor oxidante que existe debido a que la molécula es poco reactiva (por su doble enlace) y sin embargo es muy electronegativo, casi como el flúor.
La sustancia más oxidante que existe es el
catión KrF+ porque fácilmente forma Kr y F+. Entre otras, existen el KMnO4, el Cr2O7, el agua oxigenada (H2O2), el ácido nítrico (HNO3), los hipohalitos y los halatos (por ejemplo el hipoclorito sódico (NaClO) muy oxidante en medio alcalino y el bromato potásico (KBrO3)). El ozono (O3) es un oxidante muy enérgico:
Br− + O3 → BrO3−
El nombre de "oxidación" proviene de que en la mayoría de estas reacciones, la transferencia de
electrones se da mediante la adquisición de átomos de oxígeno (cesión de electrones) o viceversa. Sin embargo, la oxidación y la reducción puede darse sin que haya intercambio de oxígeno de por medio, por ejemplo, la oxidación de yoduro de sodio a yodo mediante la reducción de cloro a cloruro de sodio:
2 NaI + Cl2 → I2 + 2 NaCl
Esta puede desglosarse en sus dos semirreacciones correspondientes:
2I− → I2 + 2 e−
Cl2 + 2 e− → 2 Cl
Ejemplo
El
hierro puede presentar dos formas oxidadas:
Óxido ferroso: FeO.
Óxido férrico: Fe2O3

Principio de electroneutralidad

Dentro de una reacción global redox, se da una serie de reacciones particulares a las cuales se les llama semirreacciones o reacciones parciales.
2 Na+ + 2 Cl− → 2 Na + Cl2
o más comúnmente:
2 NaCl → 2 Na + Cl2
La tendencia a reducir u oxidar a otros elementos químicos se cuantifica por el
potencial de reducción, también llamado potencial redox.
Una titulación redox es una en la que un indicador químico indica el cambio en el porcentaje de la reacción redox mediante el viraje de color entre el oxidante y el reductor.

Reducción- oxidación

Las reacciones de reducción-oxidación (también conocidas como reacciones redox) son las reacciones de transferencia de electrones. Esta transferencia se produce entre un conjunto de elementos químicos, uno oxidante y uno reductor (una forma reducida y una forma oxidada respectivamente).
Para que exista una reacción redox, en el sistema debe haber un elemento que ceda
electrones y otro que los acepte:
El agente
reductor es aquel elemento químico que suministra electrones de su estructura química al medio, aumentando su estado de oxidación, es decir; oxidándose.
El agente
oxidante es el elemento químico que tiende a captar esos electrones, quedando con un estado de oxidación inferior al que tenía, es decir; reducido.
Cuando un elemento químico reductor cede electrones al medio se convierte en un elemento oxidado, y la relación que guarda con su precursor queda establecida mediante lo que se llama un par redox. Análogamente, se dice que cuando un elemento químico capta electrones del medio se convierte en un elemento reducido, e igualmente forma un par redox con su precursor reducido.